
qpOASES User’s Manual

Version 2.0 (June 2009)

Hans Joachim Ferreau et al.1

Optimization in Engineering Center (OPTEC) and

Department of Electrical Engineering, K. U. Leuven

support@qpOASES.org

1qpOASES developers in alphabetical order: Hans Joachim Ferreau, Eckhard Arnold, Holger
Diedam, Boris Houska, Aude Perrin, Thomas Wiese

mailto:support@qpOASES.org

2

Contents

1 Introduction 5

2 Installation 7

3 Getting Started 9

3.1 Outline . 9

3.2 Main Steps . 9

3.3 A Tutorial Example . 12

3.4 Setting Up Your Own Example . 13

4 Different Solution Variants for Special QP Types 15

4.1 Solving QPs in Standard Form . 15

4.2 Solving QPs with Varying Matrices . 16

4.3 Solving Simply Bounded QPs . 16

4.4 Solving QPs with Positive Semi-Definite Hessian Matrix 17

4.5 Solving QPs with Trivial Hessian Matrix 18

5 Advanced Functionality 21

5.1 Obtaining Status Information . 21

5.2 Initialised Homotopy . 22

5.3 Specifying a CPU Time Limit for QP Solution 25

5.4 Speeding-Up Solution for QPs Comprising Many Constraints 26

5.5 Further Useful Functionality . 27

5.6 Add-Ons for qpOASES . 29

5.6.1 Solution Analysis . 29

5.6.2 Solving Test Problems from the Online QP Benchmark Collection . 30

6 Interfaces for Third-Party Software 31

6.1 Interface for Matlab . 31

6.2 Interface for Simulink . 34

6.3 Interface for scilab . 36

6.4 Running qpOASES on dSPACE . 39

6.5 Using qpOASES within the ACADO Toolkit 39

6.6 Using qpOASES within MUSCOD-II . 40

3

Contents

7 Developer Information and Compiling Options 41
7.1 Class Hierarchy . 41
7.2 Global Constants . 43
7.3 Compiler Flags . 43

Bibliography 45

A qpOASES Software Licence 47

4

Chapter 1

Introduction

Model predictive control (MPC) is an advanced control strategy which allows to determine

inputs of an arbitrary process that optimise the forecasted process behaviour. These inputs,

or control actions, are calculated repeatedly using a mathematical process model for the

prediction. In doing so, the fast and reliable solution of convex quadratic programming

problems in real-time becomes a crucial ingredient of nearly all algorithms for both linear and

nonlinear model predictive control. The success of linear MPC—where just one quadratic

program (QP) needs to be solved at each sampling instant—can even be attributed to the

fact that highly efficient and reliable methods for QP solution have existed for decades, and

that their computation times are much smaller than the required sampling times in typical

applications. On the other hand, in nonlinear MPC algorithms, quadratic programs often

arise as subproblems during the iterative nonlinear solution procedure, so that not only one,

but several QPs need to be solved at each sampling instant.

qpOASES is an open-source implementation of the recently proposed online active set strat-

egy (see [3], [4], [2]), which was inspired by important observations from the field of

parametric quadratic programming. It builds on the expectation that the optimal active set

does not change much from one quadratic program to the next and has several theoreti-

cal features that make it particularly suited for model predictive control applications. The

software package qpOASES implements these ideas for solving QPs of the following form

min
x

1
2xT Hx + xT g(w0)

s. t. lbA(w0) ≤ Ax ≤ ubA(w0) ,

lb(w0) ≤ x ≤ ub(w0) ,

where the Hessian matrix is symmetric and positive (semi-)definite and the gradient vector

as well as the bound and constraint vectors depend affinely on the parameter w0. It has

already been successfully used for closed-loop control of a real-world Diesel engine [5].

This manual is organised as follows: first, the installation of the qpOASES software package

is explained in Chapter 2. Afterwards, a concise description of its main functionality is

given in Chapter 3, which should enable you to use qpOASES within a couple of minutes.

Chapter 4 describes special variants for QPs with varying matrices, simply bounded QPs

as well as QPs with semi-definite Hessian matrices; advanced functionality like obtaining

5

Chapter 1. Introduction

status information or using the concept of a so-called initialised homotopy are presented in

Chapter 5. Various interfaces to third-party software are presented in Chapter 6. Finally,

Chapter 7 (which is mainly intended for software developers) provides some insight into the

internal programming structure of qpOASES and options for further tuning of the algorithm.

Further information and a list of frequently asked questions can be found on

http://www.qpOASES.org/ .

If you have got questions, remarks or comments on qpOASES, please contact the main

author:

Hans Joachim Ferreau

Katholieke Universiteit Leuven

Department of Electrical Engineering (ESAT)

Kasteelpark Arenberg 10, bus 2446

B-3001 Leuven-Heverlee, Belgium

Phone: +32 16 32 03 63

E-mail: joachim.ferreau@esat.kuleuven.be / support@qpOASES.org

Also bug reports and source code extensions are most welcome!

Acknowledgements

I would like to express my deep gratitude to all people who helped me in developing qpOASES.

First of all I thank my Diplom thesis supervisors Professor Dr. Dr. h. c. Hans Georg Bock, head of the “Simulation and
Optimization Group” of the Interdisciplinary Center for Scientific Computing (IWR) at University of Heidelberg, and
Professor Dr. Moritz Diehl, Department of Electrical Engineering (ESAT) and principal investigator of the Optimization
in Engineering Center (OPTEC) at K. U. Leuven, for intensive personal support and excellent mathematical advice.
The online active set strategy builds on their ideas and they also encouraged me to make the qpOASES source code
publicly available.

Moreover, I owe many thanks to all my former colleagues in Heidelberg and my new ones in Leuven for inspiring
discussions and pleasant conversations that were more or less related to the qpOASES software package.

Finally, I would like to thank Peter Ortner, Peter Langthaler and Luigi del Re, Institute for Design and Control of
Mechatronical Systems at JKU Linz, for making possible the first run of qpOASES on real (Diesel engine) controller
hardware.

The initial version of the software has been partly developed within the framework of the REGINS-PREDIMOT
European project whose financial support is acknowledged. Further development of the code has been supported by
Research Council KUL: CoE EF/05/006 Optimization in Engineering Center (OPTEC). The main author currently
holds a PhD fellowship of the Research Foundation – Flanders (FWO) whose financial support and permission to
work on this open-source software project is gratefully acknowledged.

Hans Joachim Ferreau

6

http://www.qpOASES.org/
mailto:joachim.ferreau@esat.kuleuven.be
mailto:support@qpOASES.org

Chapter 2

Installation

The software package qpOASES is written in an object-oriented manner in C++ and comes

along with fully commented source code files. Besides some standards libraries1 no further

external software packages are required.

For installing qpOASES under Linux, perform the following steps:

1. Download the current version of qpOASES from

http://www.qpOASES.org/

by saving the file qpOASES-2.0.tar.gz on your local machine.

2. Unpack the archive:

gunzip qpOASES-2.0.tar.gz

tar xf qpOASES-2.0.tar

A new directory qpOASES-2.0 will be created; from now on we refer to (the full path

of) this directory by <install-dir>. It contains five subfolders, namely

• SRC (qpOASES source files),

• INCLUDE (qpOASES header files),

• EXAMPLES (example files for setting up your own QP problems),

• INTERFACES (interfaces to third-party software),

• DOC (this manual and a doxygen configuration file).

3. qpOASES is distributed under the terms of the GNU Lesser General Public License

2.1, which you can find in the file <install-dir>/LICENSE.txt or Appendix A

of this manual. Please read this licence file carefully before you proceed with the

installation, as you implicitly agree with this licence by using qpOASES!

1math.h, stdio.h, stdlib.h, string.h (as well as sys/time.h, sys/stat.h or windows.h for runtime
measurements)

7

http://www.qpOASES.org/

Chapter 2. Installation

4. If you want to use qpOASES via the provided third-party interfaces only, you can skip

the following steps and proceed as described in Chapter 6. Otherwise continue with

the

Compilation of the qpOASES library libqpOASES.a2:

cd <install-dir>/SRC

make

This library libqpOASES.a provides the complete core functionality of the qpOASES

software package. It can be used by, e.g., linking it against a main function from the

EXAMPLES folder.

5. Compilation of a set of simple test examples:

cd <install-dir>/EXAMPLES

make

Among others, an executable called example1 should have been created; run it in

order to test your installation. If it terminates after successfully solving two QPs,

qpOASES has been successfully installed!

6. Optional, create source code documentation3:

cd <install-dir>/DOC

doxygen doxygen.config

Afterwards, you can open the file <install-dir>/DOC/HTML/index.html with

your favorite browser in order to view qpOASES’s source code documentation.

Remarks:

• It is also possible to install qpOASES on a Windows or Mac OS machine as it does

not require Linux-specific commands.

• If compilation fails due to the fact that the snprintf() function is not supported, you

might uncomment line 54 within <install-dir>/INCLUDE/MessageHandling.hpp

and try to compile again.

2The make command also creates a library called libqpOASESextras.a whose meaning is described in
Section 5.6.

3All source code files are commented in a way suitable for the documentation system doxygen [6].

8

Chapter 3

Getting Started

This chapter explains to you within a few minutes how to solve a quadratic programming

(QP) problem, or a whole sequence of them, by means of qpOASES. At the end a tutorial

example is presented that might serve as a template for your own QPs.

3.1 Outline

Core of qpOASES is the QProblem class which is able to store, process and solve convex

quadratic programs using the online active set strategy; it makes use of several auxiliary

classes (see Chapter 7). Except for special situations, the QProblem class is intended to be

the only user interface to qpOASES’s functionality.

For solving a series of convex quadratic programs with fixed Hessian and constraint matrix,

the following steps are necessary:

1. create an instance of the QProblem class,

2. initialise your QProblem object and solve the first QP (specified by its QP matrices

and vectors),

3. solve each following QP by passing its vectors to your QProblem object.

Now, we will explain these three steps in more detail. Various variants and special cases

are treated in later chapters for the ease of presentation.

3.2 Main Steps

Creating an Instance of the QProblem Class

Creating an QProblem object is done by means of the following constructor

QProblem(int nV, int nC);

which takes the number of variables nV and the number of constraints nC of the quadratic

program sequence to be solved. At the moment it is not possible to solve QP sequences

with varying problem dimensions. However, you might disable/enable constraints within a

QP sequence (see Section 5.5).

9

Chapter 3. Getting Started

Summary of the first step:

You can create an instance example of the QProblem class with the following command:

QProblem example(nV,nC);

Initialisation and Solution of First QP

The second step requires to initialise all internal data structures of the QProblem object and

the solution of the first QP. Both can be accomodated with a single call to the following

function:

returnValue init(const double* const H,
const double* const g,
const double* const A,
const double* const lb,
const double* const ub,
const double* const lbA,
const double* const ubA,
int& nWSR,
double* const cputime
);

which takes the usually positive definite Hessian matrix H ∈ RnV×nV, the gradient vector

g ∈ RnV, the constraint matrix A ∈ RnC×nV the lower and upper bound vectors lb,ub ∈
RnV and the lower and upper constraints’ bound vectors lbA,ubA ∈ RnC of the initial

quadratic program. Equality constraints are imposed be setting the corresponding entries

of lower and upper (constraints’) bounds vectors to the same value.

All these data must be stored in arrays of type double (matrices stored row-wise, i.e. C

style, in an one-dimensional array) with appropriate dimensions. If there are, for example,

no upper bounds in your QP formulation, you can pass a null pointer instead of vector lb1.

All init functions make deep copies of all arguments, thus afterwards you have to free

their memory yourself.

The function init initialises all internal data structures, e.g. matrix factorisations, and

solves the first quadratic program using the initial homotopy idea of the online active

set strategy. The integer argument nWSR specifies the maximum number of working set

recalculations to be performed during the initial homotopy (on output it contains the number

of working set recalculations actually performed!). If cputime is not the null pointer, it

contains the maximum allowed CPU time in seconds for the whole initialisation (and the

actually required one on output). See Section 5.3 for further details.

The function init returns a status code (of type returnValue) which indicates whether

the initialisation was successful; possible values are:

• SUCCESSFUL RETURN: initialisation successful (including solution of first QP),

• RET MAX NWSR REACHED: initial QP could not be solved within the given number of

working set recalculations,

1If your QP does not comprise constraints (apart from bounds), you should make use of a special variant
for simply bounded QPs (cf. Chapter 4).

10

3.2. Main Steps

• RET INIT FAILED (or a more detailed error code): initialisation failed.

If init indicates a SUCCESSFUL RETURN, several functions enable you to obtain information

about the solution of the first QP. The most important ones are:

• returnValue getPrimalSolution(double* const xOpt) const

that writes the optimal primal solution vector (dimension: nV) into the array xOpt,

which has to be allocated (and freed) by the user;

• returnValue getDualSolution(double* const yOpt) const

that writes the optimal dual solution vector2 (dimension: nV + nC) into the array

yOpt, which has to be allocated (and freed) by the user;

• double getObjVal() const

that returns the optimal objective function value.

Summary of the second step:

Having created an QProblem object example, it can be initialised together with solving the

first QP with the following command: example.init(H,g,A,lb,ub,lbA,ubA,nWSR,cputime);

Solution of the Following QPs

If not only a single quadratic program but a whole sequence of QPs shall be solved—as it

is the usual situation for an MPC problem—the next QP can be solved using the function:

returnValue hotstart(const double* const g_new,
const double* const lb_new,
const double* const ub_new,
const double* const lbA_new,
const double* const ubA_new,
int& nWSR,
double* const cputime
);

The next QP is specified by passing its gradient vector g new, its lower and upper bound vec-

tors lb new and ub new as well as its lower and upper constraints’ bound vectors lbA new

and ubA new (QP matrices are assumed to be constant). It is solved by means of the on-

line active set strategy using at most nWSR working set recalculations or at most cputime

seconds of CPU time (if not null). On output nWSR and cputime contain the number of

2We use the following definition of the Lagrange function to define the dual multipliers:

Hxopt + g(w0)−AT yopt = 0 ⇐⇒ H · x + g− y[0...nV-1]− A
T
y[nV...nV+nC-1] = 0

The dual solution vector contains exactly one entry per lower/upper bound as well as exactly one entry per
lower/upper constraints’ bound. Positive entries correspond to active lower (constraints’) bounds, negative
entries to active upper (constraints’) bounds and a zero entry means that both corresponding (constraints’)
bounds are inactive.

11

Chapter 3. Getting Started

working set recalculations that were actually performed and the actually required CPU time

for solving the next QP, respectively.

Like most qpOASES functions, hotstart returns a status code; possible values are:

• SUCCESSFUL RETURN: QP has been solved,

• RET MAX NWSR REACHED: QP could not be solved within the given number of working

set recalculations,

• RET HOTSTART FAILED (or a more detailed error code): QP solution failed.

Summary of the third step:

Having created and initialised a QProblem object example, the next QP can be solved as

follows: example.hotstart(g new,lb new,ub new,lbA new,ubA new,nWSR,cputime);

3.3 A Tutorial Example

A complete example for solving two very simple quadratic programs using qpOASES is given

in the file <install-dir>/EXAMPLES/example1.cpp:

#include <QProblem.hpp>

int main()
{

using namespace qpOASES;

/* Setup data of first QP. */
double H[2*2] = { 1.0, 0.0, 0.0, 0.5 };
double A[1*2] = { 1.0, 1.0 };
double g[2] = { 1.5, 1.0 };
double lb[2] = { 0.5, -2.0 };
double ub[2] = { 5.0, 2.0 };
double lbA[1] = { -1.0 };
double ubA[1] = { 2.0 };

/* Setup data of second QP. */
double g_new[2] = { 1.0, 1.5 };
double lb_new[2] = { 0.0, -1.0 };
double ub_new[2] = { 5.0, -0.5 };
double lbA_new[1] = { -2.0 };
double ubA_new[1] = { 1.0 };

/* Setting up QProblem object. */
QProblem example(2,1);

/* Solve first QP. */
int nWSR = 10;
example.init(H,g,A,lb,ub,lbA,ubA, nWSR,0);

12

3.4. Setting Up Your Own Example

/* Solve second QP. */
nWSR = 10;
example.hotstart(g_new,lb_new,ub_new,lbA_new,ubA_new, nWSR,0);

return 0;
}

In order to access the functionality of the qpOASES software package via the QProblem

class, the header file QProblem.hpp is included.

The main function starts with defining the data of two very small-scale QPs. Afterwards,

a QProblem object is created which is then initialised together with solving the first QP.

Finally, the hotstart function is used to solve the second QP.

You might wonder about the command using namespace qpOASES; at the very top of

the main function. It is used because all classes, global functions and variables of the

qpOASES software package are collected in a common namespace that is called qpOASES,

too.

3.4 Setting Up Your Own Example

The easiest way for setting up your own example, say yourexample, is to use an existing

one as a template. In doing so, perform the following steps:

1. Copy the existing example:

cd <install-dir>/EXAMPLES

cp example1.cpp yourexample.cpp

2. Edit the examples Makefile:

Open the file <install-dir>/EXAMPLES/Makefile and add a new target

yourexample: yourexample.o

${CPP} -o $@ ${CPPFLAGS} $@.o -L${LIBS PATH} -l${QPOASES LIB}

(Do not forget to add its name to the all target.)

3. Implement your own example:

Modify your file <install-dir>/EXAMPLES/yourexample.cpp and run make. An

executable called yourexample should be at your service.

13

14

Chapter 4

Different Solution Variants for
Special QP Types

qpOASES is a structure-exploiting active-set QP solver. This chapter details how to most

efficiently solve your QPs with qpOASES by choosing a solution variant that matches best

your specific problem type. For this purpose, three different QProblem-like classes with

overloaded constructors are available.

4.1 Solving QPs in Standard Form

Usually qpOASES expects QPs to be formulated in the following standard form:

min
x

1
2xT Hx + xT g(w0)

s. t. lbA(w0) ≤ Ax ≤ ubA(w0) ,

lb(w0) ≤ x ≤ ub(w0) ,

with a positive definite Hessian matrix H. If your QP is given in exactly this form, you should

simply make use of the standard QProblem class as described in Chapter 3. Otherwise,

solving your QP is also possible or can be done more efficiently if

• also your QP matrices H and/or A are varying from one QP to the next by using the

SQProblem class (see Section 4.2);

• your QP formulation does not comprise constraints involving a matrix A by using the

QProblemB class (see Section 4.3);

• your Hessian matrix H is not positive definite but only positive semi-definite by using

a dedicated constructor (see Section 4.4);

• your Hessian matrix H is zero, i.e. your QP is actually a linear program, by using a

dedicated constructor (see Section 4.5);

• your Hessian matrix H happens to be the identity matrix by using a dedicated con-

structor (see also Section 4.5).

15

Chapter 4. Different Solution Variants for Special QP Types

4.2 Solving QPs with Varying Matrices

Although the online active set strategy was originally designed for QP sequences with fixed

Hessian and constraint matrices, it can be easily extended to the case where also these

matrices vary from QP to the next (see [5] for a mathematical description of this idea).

In order to use this extension, two modifications are necessary:

1. Create an instance of the SQProblem class (instead of one of type QProblem) by

• including the header file SQProblem.hpp (instead of QProblem.hpp) and

• use the constructor of the SQProblem class and a suitable init function, both

take exactly the same arguments as those of the QProblem class.

2. Call the modified function

returnValue hotstart(const double* const H_new,
const double* const g_new,
const double* const A_new,
const double* const lb_new,
const double* const ub_new,
const double* const lbA_new,
const double* const ubA_new,
int& nWSR,
double* const cputime
);

for transition from one QP to the next; it also takes the new Hessian H new as well

as the new constraint matrix A new as arguments.

A complete example for using the SQProblem class can be found within the file

<install-dir>/EXAMPLES/example1a.cpp.

4.3 Solving Simply Bounded QPs

We call a quadratic program “simply bounded” whenever it does not comprise constraints

but only bounds:

min
x

1
2xT Hx + xT g(w0)

s. t. lb(w0) ≤ x ≤ ub(w0) .

This special form can be exploited within the solution algorithm for speeding up the com-

putation, typically by a factor of three to five. Therefore, the qpOASES software package

implements the special class QProblemB for solving simply bounded QPs.

In order to make use of this feature do the following:

1. You have to create a QProblemB object using the following constructor

QProblemB(int nV);

16

4.4. Solving QPs with Positive Semi-Definite Hessian Matrix

2. Afterwards you can initialise the QProblemB object together with solving the first

simply bounded QP by calling, for example,

returnValue init(const double* const H,
const double* const g,
const double* const lb,
const double* const ub,
int& nWSR,
double* const cputime
);

The only difference from the QProblem class is the fact that the arguments specifying

the constraints—i.e. A, lbA, ubA, and nC—are missing.

3. For solving the next problem within your QP sequence, the following variant of the

hotstart function is available:

returnValue hotstart(const double* const g_new,
const double* const lb_new,
const double* const ub_new,
int& nWSR,
double* const cputime
);

Again, it takes exactly the same arguments as the corresponding QProblem member

function except for the two arguments lbA new, ubA new.

A complete example for using the QProblemB class can be found within the file

<install-dir>/EXAMPLES/example1b.cpp.

4.4 Solving QPs with Positive Semi-Definite Hessian Matrix

qpOASES provides a built-in regularisation procedure for dealing with semi-definite Hessian

matrices. This procedure first adds a small multiple of the identity matrix1 to the Hessian

and solves the corresponding regularised QP. Afterwards, a few post-iterations2 are per-

formed that improve solution accuracy signigificantly over a plain regularisation at virtually

now extra computational cost.

If your QP involves a Hessian matrix that is only positive semi-definite, this regularisation

scheme is used automatically (i.e. without any change in the constructor or other function

calls) as semi-definiteness can be easily detected. However, if your Hessian is only positive

semi-definite, this causes a certain computational overhead3 that can be avoided by a

dedicated constructor call, e.g.,

1given by the global constant EPS FOR REGULARISATION
2given by the global constant MAX NUMBER OF REGULARISATION STEPS
3an additional Cholesky decomposition

17

Chapter 4. Different Solution Variants for Special QP Types

QProblem(int nV, int nC, HessianType hessianType);

Therein, hessianType can take one of the following values:

• HST POSDEF: Hessian matrix is positive definite,

• HST SEMIDEF: Hessian matrix is positive semi-definite,

• HST ZERO: Hessian matrix is zero matrix (see next section),

• HST IDENTITY: Hessian matrix is identity matrix (see next section).

If hessianType is set to HST SEMIDEF or HST ZERO, the built-in regularisation scheme is

switched on at no additional computational cost. Corresponding overloaded constructors

also exist for the SQProblem and QProblemB class, respectively.

When using the built-in regularisation procedure, the default values for the regularisation

parameter and the maximum number of post-iterations are taken from the global con-

stants EPS FOR REGULARISATION and MAX NUMBER OF REGULARISATION STEPS, respec-

tively. However, it is possible to change these values at runtime by calling the following

member functions:

• returnValue setEpsForRegularisation(double eps);

• returnValue setMaxNumOfRegularisationSteps(int nRegSteps);

Both functions expect positive arguments, though the latter function also accepts the

argument value 0 which effectively disables the built-in regularisation procedure.

4.5 Solving QPs with Trivial Hessian Matrix

Whenever a Hessian matrix is passed to qpOASES, i.e. when calling a init function or

performing a hotstart while using the SQProblem class, it is internally checked whether

the Hessian is trivial. It is considered trivial if and only if it is the zero or identity matrix,

corresponding to HST ZERO or HST IDENTITY as mentioned in the previous section. If

the Hessian is trivial, several simplifications of the internal linear algebra operations apply,

cutting computational load by about a factor of two.

If your Hessian is trivial, you might explicitly provide this information to qpOASES via a

dedicated constructor call, e.g.,

QProblem(int nV, int nC, HessianType hessianType);

(corresponding overloaded constructors also exist for the SQProblem and QProblemB class,

respectively). If you set hessianType to HST ZERO or HST IDENTITY, no internal memory

for storing the Hessian matrix is allocated. Moreover, when doing so you are allowed to

pass a null pointer as argument within all function calls involving the Hessian matrix, e.g.,

// assumes that a QProblem object "qp" exists
qp.init(0,g,A,lb,ub,lbA,ubA,nWSR,cputime);

18

4.5. Solving QPs with Trivial Hessian Matrix

A null pointer is then interpreted as zero or identity matrix, respectively. Whenever you

pass a non-null argument, a full Hessian matrix is expected and its type is automatically

determined internally.

Solving Linear Programming (LP) Problems

The regularisation scheme mentioned in Section 4.4 in principle also allows to solve linear

programming (LP) problems by means of qpOASES. However, qpOASES is not a dedicated

(parametric) LP solver, thus using it for solving LPs might be highly inefficient due to the

dense linear algebra and also might fail in certain circumstances! Therefore, this additional

feature should be only used for small-scale LPs (comprising, say, a hundred variables) and

in situations where computational time is not the main concern.

A complete example for solving two small-scale LPs with qpOASES can be found within the

file <install-dir>/EXAMPLES/exampleLP.cpp.

Solving QPs whose Hessian is the Identity Matrix

Via a coordinate transformation, every strictly convex QP can be transformed into an

equivalent one whose Hessian is the identity matrix. Also `2-norm minimisation problems

naturally pose QPs whose Hessian is the identity matrix. Thus, it is possible to provide

such QP sequence to qpOASES by specifying the Hessian type to be HST IDENTITY within

the above-mentioned constructor call; all other function calls remain unaltered.

19

20

Chapter 5

Advanced Functionality

5.1 Obtaining Status Information

There are many functions for obtaining status information on the current iterate. Firstly,

you can obtain the primal and dual iterate as well as the corresponding objective function

value by using, respectively:

• returnValue getPrimalSolution(double* const xOpt) const ,

• returnValue getDualSolution(double* const yOpt) const ,

• double getObjVal() const .

If you wonder why these are the same functions as for obtaining the optimal solution after a

QP has been solved (cf. Section 3.2), you should recall that qpOASES uses a homotopy for

solving the current QP that produces a sequence of iterates that are optimal for intermediate

QPs along the homotopy path.

The first two functions expect an allocated double array and store the optimal solution

vector if and only if the (intermediate) QP has been solved; otherwise the error code

RET QP NOT SOLVED is returned. The function getObjVal() calculates and returns the

optimal objective function value or returns INFTY if the (intermediate) QP has not been

solved.

Secondly, you can ask for the total number of variables and constraints and for the cardinality

of certain subsets (at current iterate!) of them:

• int getNV() const : returns number of variables,

• int getNFR() const : returns number of free variables,

• int getNFX() const : returns number of fixed variables,

• int getNC() const : returns number of constraints,

• int getNEC() const : returns number of (implicitly defined) equality constraints,

• int getNAC() const : returns number of active constraints,

21

Chapter 5. Advanced Functionality

• int getNIAC() const : returns number of inactive constraints.

Moreover,

• int getNZ() const : returns dimension of the null space of active constraints.

Finally, you can ask for the overall status of the QP (object):

• BooleanType isInitialised() const : returns BT TRUE if and only if the QP object

has been initialised,

• BooleanType isSolved() const : returns BT TRUE if and only if QP has been solved,

• BooleanType isInfeasible() const : returns BT TRUE if and only if QP was found

to be infeasible.

5.2 Initialised Homotopy

For solving a QP, qpOASES always starts at the optimal solution of the previous QP and

performs a homotopy to the optimal solution of the QP to be solved. At the very beginning

of a sequence (when init is called) an auxiliary QP is constructed internally whose optimal

solution is known. This optimal solution serves as a starting point for the homotopy to

the optimal solution of the (actual) initial QP. By default, this auxiliary QP has the origin

as solution and its active set is empty (or comprising implicitly fixed variables and equality

constraints only).

The notion initialised homotopy refers to the possibility to incorporate an initial guess for

the optimal solution or the active set at the solution into the construction of the auxiliary

QP. This is done by calling a special variant of the init function:

returnValue init(const double* const H,
const double* const g,
const double* const A,
const double* const lb,
const double* const ub,
const double* const lbA,
const double* const ubA,
int& nWSR,
double* const cputime,
const double* const xOpt,
const double* const yOpt,
const Bounds* const guessedBounds,
const Constraints* const guessedConstraints
);

Besides the arguments of the usual init function, it (optionally) takes guesses for the primal

solution vector xOpt, the dual solution vector yOpt or the status (active/inactive) of bounds

and constraints at the solution (see below). Null pointers can be passed for all of these

22

5.2. Initialised Homotopy

arguments. The construction of the auxiliary QP now depends on the arguments passed (for

convenience we summarise guessedBounds and guessedConstraints to guess which is

null if and only if both parts are null) as follows:

1. xOpt == 0, yOpt == 0, guess == 0: start at primal/dual origin with empty active

set (usual auxiliary QP setup);

2. xOpt != 0, yOpt == 0, guess == 0: start at primal/dual origin and determine ac-

tive set by ”clipping”1;

3. xOpt == 0, yOpt != 0, guess == 0: start with primal variables equal to zero, dual

variables equal to given vector and determine active set from signs of dual variables;

4. xOpt == 0, yOpt == 0, guess != 0: start at primal/dual origin and with given ac-

tive set;

5. xOpt != 0, yOpt != 0, guess == 0: start with given vectors for primal and dual

variables and determine active set from signs of dual variables;

6. xOpt != 0, yOpt == 0, guess != 0: start with primal variables equal to given vec-

tor, dual variables equal to zero and with given active set;

7. xOpt != 0, yOpt != 0, guess != 0: start with given vectors for primal and dual

variables and with given active set (assume them to be consistent!).

The remaining eighth combination is not allowed for consistency reasons.

Besides initialising the homotopy at startup of the QP sequence, it is also possible to

incorporate an initial guess for the active set when calling the hotstart function:

returnValue hotstart(const double* const g_new,
const double* const lb_new,
const double* const ub_new,
const double* const lbA_new,
const double* const ubA_new,
int& nWSR,
double* const cputime,
const Bounds* const guessedBounds,
const Constraints* const guessedConstraints
);

In this case only the active set can be specified, primal and dual solution vectors are

always taken from the previous QP solution. This hotstart variant updates the active set

according to the user’s guess and performs a usual homotopy afterwards.

1i.e. add all bounds and constraints to active set that are violated for given primal solution vector

23

Chapter 5. Advanced Functionality

Specifying an Initial Guess for the Active Set

For specifying an initial guess for the active set, you have to setup a Bounds and/or

Constraints object. This can either be done from scratch or by modifying an exisiting

one. For the first variant you might use the following code fragment:

// assumes that a QP object "qp" exists
int nV = qp.getNV();
int nC = qp.getNC();

Bounds guessedBounds(nV);
guessedBounds.setupAllLower();

Constraints guessedConstraints(nC);
guessedConstraints.setupAllInactive();

First, a Bounds object comprising a working set of nV bounds is constructed and afterwards

all bounds are set to be active at their lower limit. Second, a Constraints object is

constructed analogously and all constraints are set to be inactive. For a Bounds object you

can call one of the following functions:

• returnValue setupAllFree(): all variables are free, i.e. bounds are inactive,

• returnValue setupAllLower(): all variables are fixed at their lower limits,

• returnValue setupAllUpper(): all variables are fixed at their upper limits.

For a Constraints object you can call one of the following functions:

• returnValue setupAllInactive(): all constraints are inactive,

• returnValue setupAllLower(): all constraints are active at their lower limits,

• returnValue setupAllUpper(): all constraints are active at their upper limits.

Moreover, you might setup the status of each bound/constraint one by one by calling:

• returnValue setupBound(int number, SubjectToStatus status) or

• returnValue setupConstraint(int number, SubjectToStatus status) ,

repectively, where number specifies the number of the repective bound/constraint (starting

at zero!) and status is one of the following types:

• ST INACTIVE: bound/constraint is inactive,

• ST LOWER: bound/constraint is active at its lower limit,

• ST UPPER: bound/constraint is active at its upper limit.

Please note that you can call either exactly one setupAll* variant or exactly one of

setupBound/setupConstraint for each single bound/constraint!

Instead of setting up a Bounds/Constraints object from scratch, you might want to

modify an existing one. For achieving this, you will most commonly first obtain a copy of

the active set of the current QP by calling:

24

5.3. Specifying a CPU Time Limit for QP Solution

// assumes that a QP object "qp" exists
Bounds guessedBounds;
qp.getBounds(guessedBounds);

Constraints guessedConstraints;
qp.getConstraints(guessedConstraints);

Afterwards you might use one of the following functions to manipulate a Bounds object:

• returnValue moveFixedToFree(int number): moves the number-th bound from

the working set of fixed variables to that of free ones,

• returnValue moveFreeToFixed(int number, SubjectToStatus status):

moves the number-th bound from the working set of free variables to that of fixed

ones (where status must be either ST LOWER or ST UPPER).

For a Constraints object you can call one of the following functions:

• returnValue moveActiveToInactive(int number): moves the number-th con-

straint from the working set of active constraints to that of inactive ones,

• returnValue moveInactiveToActive(int number, SubjectToStatus status):

moves the number-th constraint from the working set of inactive constraints to that

of active ones (where status must be either ST LOWER or ST UPPER).

Moreover, in the model predictive control context it is very common that the active set

is shifted between two consecutive sampling instants. Therefore, for both Bounds and

Constraints you can also call one of the following functions:

• returnValue shift(int offset): shifts forward the working set of bounds/

constraints by a given offset (which has to be an integer divisor of the total number

of bounds/constraints), i.e. the status information of the first offset bounds/con-

straints is thrown away and the one of the last offset ones is duplicated;

• returnValue rotate(int offset): rotates forward the working set of bounds/

constraints by a given offset.

We refer to the doxygen documentation (cf. installation step six described in Chapter 2)

for more details.

5.3 Specifying a CPU Time Limit for QP Solution

For all init and hotstart function calls the input argument nWSR is mandatory. Addition-

ally, it is possible to specify a maximum amount of CPU time to be spent on the respective

QP solution. For doing so, a non-null pointer to a double containing the maximum al-

lowed CPU time in seconds needs to be specified. If both, a maximum number of working

set recalculations nWSR and a maximum allowed CPU time cputime is given, the solution

procedure stops as soon as one of these limits is reached, whatever may occur first.

25

Chapter 5. Advanced Functionality

The CPU time limitation is based on a heuristic that estimates the required CPU time for

the next working set change; if there is not enough time left, the solution procedure stops.

This heuristic is based on the CPU time measurements of the previous working set changes,

thus the actual total CPU time might be slightly higher that the allowed one due to time

measurement inaccuracies. However, it is guaranteed that at most one working set change

too much is performed.

Note that the CPU timit limit only can take effect if a system clock is available via the

global getCPUtime function (implemented within the file SRC/Utils.cpp).

5.4 Speeding-Up Solution for QPs Comprising Many Constraints

Heuristic for Approximating the Constraint Product

In case the QP comprises much more constraints than optimisation variables, the step length

determination requires a major part of the overall computational load per QP iteration. That

is because the (costly) matrix-vector product Ax has to be formed for determining if an

inactive constraint is going to become active at the next iterate.

qpOASES has implemented a strategy that only approximates this matrix-vector product

when inactive constraints are so far off their limits that they cannot become active during

the next step. This strategy still ensures exact QP solution and usually leads to considerable

computational savings. However, in worst-case it can even prolong computation time, thus

it needs to be explicitly enabled by defining the compiler flag MANY CONSTRAINTS .

Note, that this strategy relies on the fact that each constraint has `1-norm not greater

than 1 ! Thus, before setting this compiler flag, you might need to re-scale your constraints

(otherwise QP solution can fail!).

Specifying a Function for Evaluating the Constraints

Another possibility to speed-up QP solution in case of many constraints is available whenever

the calculation of the matrix-product of the constraint matrix A with the current primal

iterate x can be simplified. In that case, the user can provide a dedicated function that

can evaluate the product of any constraint at a given primal iterate. Once such a function

is specified and passed to an QP object, qpOASES will use this user-provided function for

calculating the constraint products instead of doing a standard (but possibly naive) matrix-

vector multiplication.

For using this functionality, you have to perform the following steps:

1. Derive a customized class from the abstract base class ConstraintProduct as de-

clared within <install-dir>/INCLUDE/ConstraintProduct.hpp. Within this

class, you have to implement the function operator which has the following form:

virtual int operator()(int constrIndex,
const double* const x,
double* const constrValue
) const;

26

5.5. Further Useful Functionality

It takes the index of the constraint to be evaluated (between 0 and nC) and an array

containing the current primal iterate (of size nV) as input arguments and writes the

corresponding product into constrValue. The function operator needs to return 0

on success and might return an error code otherwise.

2. Make this derived class available within your example, instantiate an object of this

class and pass it to the QP object by calling

// assumes that a QP object "qp" exists
MyConstraintProduct myCP();
qp.setConstraintProduct(&myCP);

A full tutorial example illustrating this feature of qpOASES can be found within the file

<install-dir>/EXAMPLES/example4.cpp.

5.5 Further Useful Functionality

Reading Data From Files

Both the init and the hotstart functions are overloaded with variants that are able to

read the required data directly from a plain ASCII file, e.g.:

• returnValue init(const char* const H_file,
const char* const g_file,
const char* const A_file,
const char* const lb_file,
const char* const ub_file,
const char* const lbA_file,
const char* const ubA_file,
int& nWSR,
double* const cputime
);

• returnValue hotstart(const char* const g_file,
const char* const lb_file,
const char* const ub_file,
const char* const lbA_file,
const char* const ubA_file,
int& nWSR,
double* const cputime
);

Instead of a double array, they expect a string with the name of the ASCII file containing

the respective data. Data files must be stored row-wise; all entries within one row should

be space- or tabulator-separated.

These variants also exists for the case when an initial guess for the active set is provided

(as described in Section 5.2).

27

Chapter 5. Advanced Functionality

Output Settings

You can adjust the text output of qpOASES using the following functions:

• PrintLevel getPrintLevel() const ,

• void setPrintLevel(PrintLevel printlevel).

The function getPrintLevel returns one of the following print levels:

• PL NONE: no output at all,

• PL LOW: print error messages only,

• PL MEDIUM: print error messages, warnings, some info messages as well as a concise

iteration summary (default value),

• PL HIGH: print all messages that occur while iterating.

By means of the function setPrintLevel you can specify one of the above-mentioned

print levels whenever desired.

Resetting a QProblem Object

Sometimes it can be useful to reset an existing QProblem object. This is particularly helpful

if you want to restart while solving a QP sequence (e.g. after an internal error has occured)

without creating a new object. This feature is provided by the following function:

returnValue reset();

It resets all internal data structures and matrix factorisations and thus leaves the QProblem

object in exactly the same state as it would be after a constructor call. Therefore, you need

to call an init function for solving the first QP after an execution of reset.

Disabling/Enabling Constraints

For the special situation where some of the constraints leave (and possibly re-enter) the

QP formulation, there exist the following two functions:

• returnValue disableConstraint(const Indexlist* const numbers);

• returnValue enableConstraint(const Indexlist* const numbers);

Both take a list (of internal data type Indexlist2) containing the indices of the constraints

to be disabled/enabled. A disabled constraint will be automatically removed from the QP

formulation (incorporated into the usual homotopy framework); by enabling it afterwards,

it will be added to the QP formulation again.

Remark: This functionality has not been sufficiently tested yet.

2Please consult the doxygen documentation on how to setup an Indexlist object.

28

5.6. Add-Ons for qpOASES

Printing QP Properties

At any time you might print a concise list of properties of the QP object by calling:

returnValue printProperties();

Besides other information, it displays number and type of bounds and constraints, respec-

tively, the type of the Hessian matrix as well as the status of the QP object.

5.6 Add-Ons for qpOASES

When compiling the source code of qpOASES, a second library libqpOASESextras.a is

created. Its functionality comprises all the functionality of the standard libqpOASES.a

and additionally provides several add-ons which are described in the following subsections.

Header and implementation files of these add-ons are located within a sub-folder EXTRAS

of INCLUDE and SRC, respectively.

5.6.1 Solution Analysis

For a posteriori analysis of a QP solution the SolutionAnalysis class is provided as an

add-on to qpOASES. Currently it implements the following two functions:

• Determination of the maximum violation of the KKT optimality conditions:

returnValue getMaxKKTviolation(QProblem* qp,
double& maxKKTviolation
) const;

This function takes a pointer to a QProblem object which is assumed to have readily

solved an (intermediate) QP and writes the maximum violation of the KKT opti-

mality conditions into the argument maxKKTviolation. If the QProblem object has

not solved the current QP, the status code RET UNABLE TO ANALYSE QPROBLEM is

returned.

• Computation of the variance-covariance matrix of the QP output for uncertain inputs:

returnValue getVarianceCovariance(QProblem* qp,
double* g_b_bA_VAR,
double* Primal_Dual_VAR
) const;

It also takes a QProblem object which is assumed to have readily solved an (in-

termediate) QP as well as the variance-covariance of the gradient, the bounds and

the constraints’ bounds, respectively (matrix dimension: 2nV+nC ∗ 2nV+nC). The

variance-covariance matrix of the primal and dual variables is written into the argu-

ment Primal Dual VAR (matrix dimension: 2nV+nC ∗ 2nV+nC), which needs to be

allocated by the user.

29

Chapter 5. Advanced Functionality

For using the SolutionAnalysis class you need to include its header SolutionAnalysis.hpp

into your source file, a complete example can be found in the file

<install-dir>/EXAMPLES/example2.cpp.

5.6.2 Solving Test Problems from the Online QP Benchmark Collection

A second qpOASES add-on is intended to facilitate the solution of test problems from the

Online QP Benchmark Collection [1]. Data for a whole QP sequence with constant matri-

ces along with its optimal primal/dual solution vectors and the optimal objective function

value is stored in plain ASCII files. For conveniently reading these files, three functions

are provided (see <install-dir>/INCLUDE/EXTRAS/OQPinterface.hpp for a detailed doc-

umentation):

• readOQPdimensions for reading the dimensions of the QP sequence,

• readOQPdata for reading data and solution information of the QP sequence,

• solveOQPbenchmark for solving a given benchmark QP sequence.

Moreover, the following function summarises the functionality of the three above-mentioned

ones:

returnValue runOQPbenchmark(const char* path,
int& nWSR,
double& maxCPUtime,
double& maxPrimalDeviation,
double& maxDualDeviation,
double& maxObjDeviation
);

It takes the path to the directory where the benchmark problem is stored as well as the

maximum number of working set recalculations per QP as input arguments. On output

nWSR contains the maximum number of working set recalculations that have been actually

performed, maxCPUtime contains the maximum CPU time that have been required for solv-

ing each of the QPs and maxPrimalDeviation, maxDualDeviation, maxObjDeviation

contain the maximum primal, dual and objective function value deviation (`∞-norm) from

the given optimal QP solutions, respectively.

For using this add-on you need to include the header file OQPinterface.hpp into your source

code, a complete example can be found in the file <install-dir>/EXAMPLES/example3.cpp.

In order to run this example, you need to download example no. 01 from the Online

QP Benchmark Collection website [1] first and extract its archive into the sub-folder

<install-dir>/EXAMPLES/chain80w/.

30

Chapter 6

Interfaces for Third-Party Software

If you want to use qpOASES via one of the following third-party interfaces, make sure that

you have performed the installation steps 1 through 3 from Chapter 2. Afterwards, proceed

with the installation of the desired interface as described in this chapter.

6.1 Interface for Matlab

Installation

It is possible to use qpOASES directly within the Matlab environment. This is facilitated

by compiling it into a so-called MEX function, which can be done as follows:

1. Start Matlab and run mex -setup for choosing a C++ compiler (e.g. gcc).

2. Execute the following commands:

cd <install-dir>/INTERFACES/MATLAB

make

The latter command runs the Matlab script make.m which does the compilation.

Executables qpOASES.<ext>, qpOASES sequence.<ext>, qpOASES sequenceSB.<ext>

and qpOASES sequenceVM.<ext> should be created, where <ext> (e.g. mexglx)

depends on your operating system.

Remarks:

• The compilation was tested under Linux using Matlab 7.3 and the gcc compiler.

Modifications of the make.m script might be necessary depending on your operating

system, your Matlab version and your compiler. For compiling the Matlab inter-

face for Windows operating systems, the Borland BCC 5.5 compiler (available

at http://www.codegear.com) has proven to work.

• If compilation fails due to the fact that the snprintf() function is not supported, you

might uncomment line 54 within <install-dir>/INCLUDE/MessageHandling.hpp

and try to compile again.

31

Chapter 6. Interfaces for Third-Party Software

Interface for Solving a Single QP

After a successful installation, you can call qpOASES as conventional QP solver from the

Matlab environment (using a cold start every time):

[obj,x,y,status,nWSRout] = qpOASES(H,g,A,lb,ub,lbA,ubA,{nWSR,{x0}})

This command combines the creation of a QProblem object and a calls to the function init

(see Chapter 3): the input arguments1 specify the Hessian matrix, the gradient vector, the

constraint matrix, the lower and upper bound vectors, the lower and upper constraints’

vectors, respectively. Again, the Hessian has to be symmetric and positive definite and all

vectors must be stored as column vectors. Moreover, the maximum number of working set

recalculations and an initial guess for the primal solution (cf. Section 5.2) can be specified

optionally (either both or only x0 can be left away).

If the input argument nWSR is not specified, the default value 5 ∗ (nV+ nC) is chosen. If no

initial guess is given, the usual homotopy starting at the origin is performed. Furthermore,

it is possible to leave one or more of the input arguments lb, ub, lbA, ubA empty if your

QP formulation does not comprise the corresponding bounds.

The output arguments contain the optimal objective function value, the optimal primal

solution vector, the optimal dual solution vector, a status flag, and the number of working

set recalculations actually performed, respectively. The status flag can take the following

values:

• 0: QP was solved,

• 1: QP could not be solved within the given number of working set recalculations,

• -1: QP solution failed.

If you do not need all output information, you can leave all but the first one away, e.g.

[obj,x] = qpOASES(H,g,A,lb,ub,[],ubA)

Remark: The function qpOASES also allows you to solve a pre-computed sequence of QPs

with fixed matrices: you just have to pass a whole sequence of input vectors. Each vector

must be stored column-wise in a matrix, i.e. the ith QP is given by the ith columns of

the QP “vectors” g, lb, ub, lbA, ubA, and all these five matrices must have the same

number of columns. As both the Hessian and the constraint matrix remain constant, they

are passed as in the case of a single QP. If a whole sequence of QPs is to be solved, also the

outputs are given column-wise, i.e. obj is a row vector, x is a matrix with optimal primal

solution vectors stored column-wise inside, and so on.

The interface allows you to directly use the QProblemB class for simply bounded QPs

(cf. Section 4.3) by simply leaving the arguments A, lbA, ubA away:

[obj,x,y,status,nWSRout] = qpOASES(H,g,lb,ub,{nWSR,{x0}})

Again, a default value for the number of working set recalculations is used (here 5 ∗ nV) if

nWSR is not specified; and you can leave lb or ub empty if they do not occur within your

QP formulation.

1all matrices have to be passed in dense format

32

6.1. Interface for Matlab

Interface for Solving a QP Sequence

As the online active set strategy is intended to solve a whole sequence of parameterised

QPs, there exist a special Matlab function for hotstarting each QP from the solution of

the previous one:

[obj,x,y,status,nWSRout] = qpOASES_sequence(’i’,H,g,A,lb,ub,lbA,ubA,{nWSR,{x0}})
[obj,x,y,status,nWSRout] = qpOASES_sequence(’h’,g,lb,ub,lbA,ubA,{nWSR})

qpOASES_sequence(’c’)

As in the C++ implementation (cf. Chapter 3), the first QP of the sequence is solved

together with the initialisation all internal data structures. For this purpose, the function

qpOASES sequence (called with first input argument ’i’) takes all QP data and optionally

the maximum number of working set recalcutations for solving the initial QP and an initial

primal solution guess as further input arguments. It provides the usual output information

(see above) and you can leave all but the first output argument away, again.

Afterwards, each subsequent QP can be solved by performing a so-called “hot start” using

the function qpOASES sequence, again (this time called with first input argument ’h’).

It takes the QP vectors of the new QP as well as the maximum number of working set

recalcutations as further input arguments, and provides the usual output information.

Having solved the last QP of the sequence, you are encouraged to free the internal memory

by calling qpOASES sequence(’c’).

For solving QPs of special types as described in Chapter 4, special variants of the above

function are provided: first, you can run the commands

[obj,x,y,status,nWSRout] = qpOASES_sequenceSB(’i’,H,g,lb,ub,{nWSR,{x0}})
[obj,x,y,status,nWSRout] = qpOASES_sequenceSB(’h’,g,lb,ub,{nWSR})

qpOASES_sequenceSB(’c’)

for solving s imply bounded QPs (input arguments correspoding to constraints are simply

left away); second, call

[obj,x,y,status,nWSRout] = qpOASES_sequenceVM(’i’,H,g,A,lb,ub,lbA,ubA,{nWSR,{x0}})
[obj,x,y,status,nWSRout] = qpOASES_sequenceVM(’h’,H,g,A,lb,ub,lbA,ubA,{nWSR})

qpOASES_sequenceVM(’c’)

for solving QPs with varying matrices, where qpOASES sequenceVM also takes the new

matrices of the next QP of the sequence. Again, the internal memory is freed by call-

ing qpOASES sequenceSB(’c’) and qpOASES sequenceVM(’c’), respectively. This

memory is kept independently for all three QP types.

Examples

The files example1.mat, example1a.mat and example1b.mat contain, respectively, very

basic examples for solving a sequence comprising two QPs with fixed matrices, varying

matrices, and with simple bounds only. For solving the first one do the following:

33

Chapter 6. Interfaces for Third-Party Software

1. Start Matlab and execute the following commands:

cd <install-dir>/INTERFACES/MATLAB

load example1.mat

2. Solve the first QP by typing

[obj,x,y,status,nWSRout] =

qpOASES sequence(’i’,H,g,A,lb,ub,lbA,ubA,10)

3. Solve the second QP by typing

[obj,x,y,status,nWSRout] =

qpOASES sequence(’h’,g new,lb new,ub new,lbA new,ubA new,10)

4. Free the internal memory by calling qpOASES sequence(’c’).

6.2 Interface for Simulink

Installation

You can use qpOASES directly within the Simulink environment, too. This requires to

compile it into a so-called S function, which can be done as follows:

1. Start Matlab and run mex -setup for choosing a C++ compiler (e.g. gcc).

2. Execute the following commands:

cd <install-dir>/INTERFACES/SIMULINK

make

The latter command runs the Matlab script make.m which does the compilation.

Three executables called qpOASES QProblemB.<ext>, qpOASES QProblem.<ext>

and qpOASES SQProblem.<ext> should be created, where <ext> (e.g. mexglx)

depends on your operating system.

Remarks:

• The compilation was tested under Linux using Matlab 7.3 and the gcc compiler.

Modifications of the make.m script might be necessary depending on your operating

system, your Matlab version and your compiler. For compiling the Simulink inter-

face for Windows operating systems, the Borland BCC 5.5 compiler (available

at http://www.codegear.com) has proven to work.

• If compilation fails due to the fact that the snprintf() function is not supported, you

might uncomment line 54 within <install-dir>/INCLUDE/MessageHandling.hpp

and try to compile again.

34

6.2. Interface for Simulink

Interface

There exist three different S function interfaces corresponding to the three different types

of QP sequences to be solved (see also Chapter 4):

1. qpOASES QProblemB.<ext> for solving simply bounded QPs,

2. qpOASES QProblem.<ext> for solving QPs with fixed matrices,

3. qpOASES SQProblem.<ext> for solving QPs with varying matrices.

For each of these interfaces a simple example is provided within the folder

<install-dir>/INTERFACES/SIMULINK. We only give details for the one for QPs with

fixed matrices, as the other ones work analoguously.

In order to run the example, start Matlab and execute the corresponding script file as

follows:

cd <install-dir>/INTERFACES/SIMULINK

load example QProblem

The sample QP data is loaded into the workspace and the file qpOASES QProblem.mdl

(depicted in Figure 6.1) is opened.

Figure 6.1: qpOASES working as Simulink S function.

The qpOASES S function has seven inputs:

• the (fixed) QP matrices H and A as well as

• the QP vectors g, lb, ub, lbA, ubA, which can be updated at each sampling instant.

35

Chapter 6. Interfaces for Third-Party Software

The dimensions of the inputs are detected automatically, but they have to be consistent

(e.g. the dimension of H needs to be the squared size of g).

Moreover, you have to define three additional values near top of the file qpOASES QProblem.cpp

before compilation of the S function:

• #define SAMPLINGTIME <value>: the sample time of the Simulink block,

• #define NCONTROLINPUTS <value>: the number of control inputs of your system

(the leading NCONTROLINPUTS components of the optimal primal solution vector are

returned as optimal output by the S function),

• #define NWSR <value>: the maximum number of working set recalculations to be

performed per QP.

For running the example you can use the specified default values; but do not forget to

adjust them to the requirements of your own problem.

At each sampling instant the qpOASES S function provides the following four outputs:

• obj: the optimal objective function value;

• x: the leading NCONTROLINPUTS components of optimal primal solution vector;

• status: a status flag which can take the values

∗ 0: QP was solved,

∗ 1: QP could not be solved within the given number of working set recalculations,

∗ -1: QP solution failed;

• nWSR: the number of working set recalculations actually performed.

An Example

Having executed the script load example QProblem as described above, you can simply

start the Simulink simulation given by the file example QProblem.mdl. The simulation

runs for 0.5 s with a sample time of 0.1 s. At the first two sampling instants the QPs as

specified in the file example1.mat of the Matlab interface are solved; at the remaining

sampling instants the last QP is solved repeatedly (requiring zero iterations as the hotstart

feature of the online active set strategy is used).

6.3 Interface for scilab

Installation

For using qpOASES within scilab, you have to perform the following steps:

36

6.3. Interface for scilab

1. Compile the scilab interface by executing the following commands:

cd <install-dir>/INTERFACES/SCILAB

make

2. Start scilab and link the interface to the scilab environment:

exec qpOASESinterface.sce;

Interface for Solving a Single QP

If you simply want to use qpOASES as conventional QP solver (using a cold start every

time), you can call it as follows:

[obj,x,y,status,nWSRout] = qpOASES(H,g,A,lb,ub,lbA,ubA,nWSR)

The input arguments specify the Hessian matrix, the gradient vector, the constraint matrix,

the lower and upper bound vectors, the lower and upper constraints’ vectors, and the

maximum number of working set recalculations, respectively. As usual, the Hessian must

be symmetric and positive definite and all vectors must be stored as column vectors.

The output arguments contain the optimal objective function value, the optimal primal

solution vector, the optimal dual solution vector, a status flag, and the number of working

set recalculations actually performed, respectively. The status flag can take the following

values:

• 0: QP was solved,

• 1: QP could not be solved within the given number of working set recalculations,

• -1: QP solution failed.

If you do not need all output information, you can leave all but the first one away.

Remark: A special variant for simply bounded QPs is not yet interfaced.

Interface for Solving a QP Sequence

As the online active set strategy is intended to solve a whole sequence of parameterised

QPs, there exist special routines for doing so:

[obj,x,y,status,nWSRout] = qpOASES_init(H,g,A,lb,ub,lbA,ubA,nWSR)
[obj,x,y,status,nWSRout] = qpOASES_hotstart(g,lb,ub,lbA,ubA,nWSR)

qpOASES_cleanup

As in the C++ implementation (cf. Chapter 3), the first QP of the sequence is solved

together with the initialisation all internal data structures. For this purpose, the function

qpOASES init takes all QP data and the maximum number of working set recalcutations

for solving the initial QP as input arguments, and provides the usual output information

(see above).

Afterwards, each subsequent QP is can be solved by performing a so-called “hot start”

using the function qpOASES hotstart. It takes the QP vectors of the new QP as well as

37

Chapter 6. Interfaces for Third-Party Software

the maximum number of working set recalcutations as input arguments, and provides the

usual output information, again.

Having solved the last QP of the sequence, you are encouraged to free the internal memory

by calling qpOASES cleanup.

For solving QPs of special types as described in Chapter 4, special variants of the above

functions are provided. First, the functions

[obj,x,y,status,nWSRout] = qpOASES_initSB(H,g,lb,ub,nWSR)
[obj,x,y,status,nWSRout] = qpOASES_hotstartSB(g,lb,ub,nWSR)

qpOASES_cleanupSB

for s imply bounded QPs (input arguments correspoding to constraints are simply left away).

Second, the functions

[obj,x,y,status,nWSRout] = qpOASES_initVM(H,g,A,lb,ub,lbA,ubA,nWSR)
[obj,x,y,status,nWSRout] = qpOASES_hotstartVM(H,g,A,lb,ub,lbA,ubA,nWSR)

qpOASES_cleanupVM

for QPs with varying matrices, where qpOASES hotstartVM also takes the new matrices

of the next QP of the sequence.

Again, the internal memory is freed by calling qpOASES cleanupSB and qpOASES cleanupVM,

respectively. This memory is kept independently for all three QP types.

Examples

The files example1.dat, example1a.dat and example1b.dat contain, respectively, very

basic examples for solving a sequence comprising two QPs with fixed matrices, varying

matrices, and with simple bounds only. For solving the first one do the following:

1. Start scilab and execute the following commands:

cd <install-dir>/INTERFACES/SCILAB

load(’example1.dat’)

2. Solve the first QP by typing

[obj,x,y,status,nWSRout] =

qpOASES init(H,g,A,lb,ub,lbA,ubA,10)

3. Solve the second QP by typing

[obj,x,y,status,nWSRout] =

qpOASES hotstart(g new,lb new,ub new,lbA new,ubA new,10)

4. Free the internal memory by calling qpOASES cleanup.

38

6.4. Running qpOASES on dSPACE

6.4 Running qpOASES on dSPACE

qpOASES can be easily run on a dSPACE board via its Simulink interface, provided that

a C++ compiler is available. This has been tested for dSPACE boards version 5.3 or

higher together with the dSPACE C++ Integration Kit 1.0.2 or higher. The following

additional notes hopefully facilitate the setup:

1. Setup your dSPACE system

2. Install the dSPACE C++ Integration Kit

3. Install qpOASES (its Simulink interface, to be more precisely)

4. Compile qpOASES with compiler flag DSPACE . This can be done, e.g., by uncom-

menting line 42 within the file INCLUDE/MessageHandling.hpp.

5. Setup your Simulink project

6. Open MK(make) file of your project (eventually you have to compile it once before)

and add the following lines at the head of this file:

enable c++ support

USER BUILD CPP APPL = ON

7. Also complete the following lines:

USER SRCS = qpOASES SQProblem.cpp qpOASES QProblem.cpp

qpOASES QProblemB.cpp SQProblem.cpp Qproblem.cpp QproblemB.cpp

SubjectTo.cpp Bounds.cpp Constraints.cpp Cyclingmanager.cpp

Indexlist.cpp MessageHandling.cpp Utils.cpp

(i.e. all source files of qpOASES and its Simulink interface)

USER SRCS DIR = ./SRC

(i.e. directory of qpOASES source files)

USER INCLUDES PATH = ./INCLUDE ./SRC

(i.e. directories of qpOASES header and source files)

8. Compile your project

9. Run the compiled project on dSPACE

6.5 Using qpOASES within the ACADO Toolkit

ACADO Toolkit is a software framework for automatic control and dynamic optimisa-

tion available at

http://www.acadotoolkit.org .

39

http://www.acadotoolkit.org

Chapter 6. Interfaces for Third-Party Software

It is an open-source (LGPL) environment for setting up a great variety of dynamic op-

timization problems for use in control, in particular (nonlinear) model predictive control.

ACADO Toolkit uses qpOASES as default QP solver, for linear MPC as well as for the

QP sequences resulting from SQP-type methods.

6.6 Using qpOASES within MUSCOD-II

MUSCOD-II is a proprietary software package for numerical solution of optimal control

problems involving differential-algebraic equations, developed by the members of the “Sim-

ulation and Optimization Group” of the Interdisciplinary Center for Scientific Computing

(IWR) at University of Heidelberg. The current version of MUSCOD-II also contains an

interface for using qpOASES as underlying QP solver.

40

Chapter 7

Developer Information and
Compiling Options

This chapter provides a very brief introduction to the qpOASES software design. If you are

interested in using qpOASES within your own software project or in developing extensions

for it yourself, we recommend to consult its doxygen documentation (cf. installation step

six described in Chapter 2) for detailed information. Moreover, you are encouraged to pose

questions or remarks to support@qpOASES.org.

7.1 Class Hierarchy

So far, we mentioned three different classes: QProblem, QProblemB and SQProblem. These

are the only classes which provide user interfaces for accessing qpOASES’s functionality.

However, they are not the only classes of the qpOASES software package but are embedded

in a more complex hierarchy (see Figures 7.1 and 7.2).

Figure 7.1: QProblem class hierarchy (illustrated with doxygen [6]).

The class QProblemB is at the bottom of the hierarchy and provides all functionality neces-

sary for solving a simply bounded quadratic program (cf. Section 4.3). The QProblem class

is derived from it and implements all necessary additional functionality for solving a QPs

comprising general constraints. The class SQProblem, in turn, inherits all features of the

QProblem class and provides further functionality for handling QPs with varying matrices

(cf. Section 4.2).

41

mailto:support@qpOASES.org

Chapter 7. Developer Information and Compiling Options

All the three classes QProblemB, QProblem and SQProblem make use of further auxiliary

classes: they possess members of type Bounds or Constraints (which are derived from a

common type SubjectTo) in order to store bounds or constraints of a QP. Both the Bounds

and the Constraints class manages lists (of type Indexlist) of free and fixed variables

and active and inactive (and disabled) constraints, respectively. Moreover, the QProblem

class also keeps an CyclingManager object for detecting and dealing with possible cycling

(only rudimentary implemented, as it seems to occur quite rarely!).

Finally, all the above mentioned classes use a class called MessageHandling for providing

errors messages, warnings or other information to the user and for handling return values of

their member functions in a unified framework. The current implementation uses a single

global instance of the MessageHandling class; the global function

MessageHandling* getGlobalMessageHandler();

returns a pointer to it.

Figure 7.2: qpOASES class hierarchy (illustrated with doxygen [6]).

42

7.2. Global Constants

7.2 Global Constants

Some useful global constants are defined in file <install-dir>/INCLUDE/Constants.hpp.

Their default values seem to work reasonably, but you might change them if necessary:

• EPS: numerical value of machine precision,

• ZERO: numerical value of zero (for situations in which it would be unreasonable to

compare with 0.0),

• INFTY: numerical value of infinity (e.g. for non-existing bounds),

• BOUNDTOL: lower/upper (constraints’) bound tolerance (an inequality constraint whose

lower and upper bound differ by less than BOUNDTOL is regarded to be an equality

constraint),

• BOUNDRELAXATION: offset for relaxing bounds at beginning of an initial homotopy.

• ENABLINGFACTOR / ENABLINGOFFSET: when enabling a constraint, it is relaxed to

(1 +/- ENABLINGFACTOR) * lbA/ubA +/- ENABLINGOFFSET,

• EPS FOR REGULARISATION: scaling factor of identity matrix used for Hessian regu-

larisation,

• MAX NUMBER OF REGULARISATION STEPS: maximum number of successive regulari-

sation steps.

7.3 Compiler Flags

When compiling qpOASES, you can define the following compiler flags:

• LINUX : activates Linux-specific functionality (e.g. time measurement),

• WIN32 : activates Windows-specific functionality (e.g. time measurement),

• DEBUG : activates more detailed output messages during the QP solution,

• MATLAB : activates Matlab-specific functionality (in particular, the use of mex-

Printf instead of printf),

• cplusplus : necessary for building C++ S functions for Simulink,

• DSPACE : define this compiler flag in order to disable the qpOASES namespace (and

switching off all text messages) for ensuring backward compatibility with dSPACE

compilers,

43

Chapter 7. Developer Information and Compiling Options

• XPCTARGET : define this compiler flag in order to disable all text messages for

ensuring compatibility for xPC Target compilers,

• MANY CONSTRAINTS : enables a usually faster way for determining the current step

length for QPs comprising many constraints (see Section 5.5),

• USE THREE MULTS GIVENS : switches to a different way of calculating Givens ro-

tations that requires only three multiplications,

• ALWAYS INITIALISE WITH ALL EQUALITIES : forces to always include all implic-

itly fixed bounds and all equality constraints into the initial working set when setting

up an auxiliary QP.

44

Bibliography

[1] Online QP Benchmark Collection. http://homes.esat.kuleuven.be/∼optec/software/onlineQP/.

[2] M.J. Best. Applied Mathematics and Parallel Computing, chapter An Algorithm for the

Solution of the Parametric Quadratic Programming Problem, pages 57–76. Physica-

Verlag, Heidelberg, 1996.

[3] H.J. Ferreau. An Online Active Set Strategy for Fast Solution of Parametric Quadratic

Programs with Applications to Predictive Engine Control. Master’s thesis, University

of Heidelberg, 2006.

[4] H.J. Ferreau, H.G. Bock, and M. Diehl. An online active set strategy to overcome the

limitations of explicit MPC. International Journal of Robust and Nonlinear Control,

18(8):816–830, 2008.

[5] H.J. Ferreau, P. Ortner, P. Langthaler, L. del Re, and M. Diehl. Predictive Control

of a Real-World Diesel Engine using an Extended Online Active Set Strategy. Annual

Reviews in Control, 31(2):293–301, 2007.

[6] D. van Heesch. Doxygen homepage. http://www.doxygen.org.

45

BIBLIOGRAPHY

46

Appendix A

qpOASES Software Licence

qpOASES is distributed under the terms of the GNU Lesser General Public License (LGPL)

as published by the Free Software Foundation:

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts

as the successor of the GNU Library Public License, version 2, hence

the version number 2.1.]

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

Licenses are intended to guarantee your freedom to share and change

free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some

specially designated software packages--typically libraries--of the

Free Software Foundation and other authors who decide to use it. You

can use it too, but we suggest you first think carefully about whether

this license or the ordinary General Public License is the better

strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use,

not price. Our General Public Licenses are designed to make sure that

you have the freedom to distribute copies of free software (and charge

for this service if you wish); that you receive source code or can get

it if you want it; that you can change the software and use pieces of

it in new free programs; and that you are informed that you can do

these things.

To protect your rights, we need to make restrictions that forbid

distributors to deny you these rights or to ask you to surrender these

rights. These restrictions translate to certain responsibilities for

you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis

or for a fee, you must give the recipients all the rights that we gave

you. You must make sure that they, too, receive or can get the source

47

Appendix A. qpOASES Software Licence

code. If you link other code with the library, you must provide

complete object files to the recipients, so that they can relink them

with the library after making changes to the library and recompiling

it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the

library, and (2) we offer you this license, which gives you legal

permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that

there is no warranty for the free library. Also, if the library is

modified by someone else and passed on, the recipients should know

that what they have is not the original version, so that the original

author’s reputation will not be affected by problems that might be

introduced by others.

Finally, software patents pose a constant threat to the existence of

any free program. We wish to make sure that a company cannot

effectively restrict the users of a free program by obtaining a

restrictive license from a patent holder. Therefore, we insist that

any patent license obtained for a version of the library must be

consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the

ordinary GNU General Public License. This license, the GNU Lesser

General Public License, applies to certain designated libraries, and

is quite different from the ordinary General Public License. We use

this license for certain libraries in order to permit linking those

libraries into non-free programs.

When a program is linked with a library, whether statically or using

a shared library, the combination of the two is legally speaking a

combined work, a derivative of the original library. The ordinary

General Public License therefore permits such linking only if the

entire combination fits its criteria of freedom. The Lesser General

Public License permits more lax criteria for linking other code with

the library.

We call this license the "Lesser" General Public License because it

does Less to protect the user’s freedom than the ordinary General

Public License. It also provides other free software developers Less

of an advantage over competing non-free programs. These disadvantages

are the reason we use the ordinary General Public License for many

libraries. However, the Lesser license provides advantages in certain

special circumstances.

For example, on rare occasions, there may be a special need to

encourage the widest possible use of a certain library, so that it becomes

a de-facto standard. To achieve this, non-free programs must be

allowed to use the library. A more frequent case is that a free

library does the same job as widely used non-free libraries. In this

case, there is little to gain by limiting the free library to free

software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free

programs enables a greater number of people to use a large body of

free software. For example, permission to use the GNU C Library in

non-free programs enables many more people to use the whole GNU

operating system, as well as its variant, the GNU/Linux operating

system.

Although the Lesser General Public License is Less protective of the

users’ freedom, it does ensure that the user of a program that is

linked with the Library has the freedom and the wherewithal to run

48

that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and

modification follow. Pay close attention to the difference between a

"work based on the library" and a "work that uses the library". The

former contains code derived from the library, whereas the latter must

be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other

program which contains a notice placed by the copyright holder or

other authorized party saying it may be distributed under the terms of

this Lesser General Public License (also called "this License").

Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data

prepared so as to be conveniently linked with application programs

(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work

which has been distributed under these terms. A "work based on the

Library" means either the Library or any derivative work under

copyright law: that is to say, a work containing the Library or a

portion of it, either verbatim or with modifications and/or translated

straightforwardly into another language. (Hereinafter, translation is

included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for

making modifications to it. For a library, complete source code means

all the source code for all modules it contains, plus any associated

interface definition files, plus the scripts used to control compilation

and installation of the library.

Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running a program using the Library is not restricted, and output from

such a program is covered only if its contents constitute a work based

on the Library (independent of the use of the Library in a tool for

writing it). Whether that is true depends on what the Library does

and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s

complete source code as you receive it, in any medium, provided that

you conspicuously and appropriately publish on each copy an

appropriate copyright notice and disclaimer of warranty; keep intact

all the notices that refer to this License and to the absence of any

warranty; and distribute a copy of this License along with the

Library.

You may charge a fee for the physical act of transferring a copy,

and you may at your option offer warranty protection in exchange for a

fee.

2. You may modify your copy or copies of the Library or any portion

of it, thus forming a work based on the Library, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices

stating that you changed the files and the date of any change.

49

Appendix A. qpOASES Software Licence

c) You must cause the whole of the work to be licensed at no

charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a

table of data to be supplied by an application program that uses

the facility, other than as an argument passed when the facility

is invoked, then you must make a good faith effort to ensure that,

in the event an application does not supply such function or

table, the facility still operates, and performs whatever part of

its purpose remains meaningful.

(For example, a function in a library to compute square roots has

a purpose that is entirely well-defined independent of the

application. Therefore, Subsection 2d requires that any

application-supplied function or table used by this function must

be optional: if the application does not supply it, the square

root function must still compute square roots.)

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Library,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based

on the Library, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote

it.

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

collective works based on the Library.

In addition, mere aggregation of another work not based on the Library

with the Library (or with a work based on the Library) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public

License instead of this License to a given copy of the Library. To do

this, you must alter all the notices that refer to this License, so

that they refer to the ordinary GNU General Public License, version 2,

instead of to this License. (If a newer version than version 2 of the

ordinary GNU General Public License has appeared, then you can specify

that version instead if you wish.) Do not make any other change in

these notices.

Once this change is made in a given copy, it is irreversible for

that copy, so the ordinary GNU General Public License applies to all

subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of

the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or

derivative of it, under Section 2) in object code or executable form

under the terms of Sections 1 and 2 above provided that you accompany

it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a

medium customarily used for software interchange.

If distribution of object code is made by offering access to copy

50

from a designated place, then offering equivalent access to copy the

source code from the same place satisfies the requirement to

distribute the source code, even though third parties are not

compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the

Library, but is designed to work with the Library by being compiled or

linked with it, is called a "work that uses the Library". Such a

work, in isolation, is not a derivative work of the Library, and

therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library

creates an executable that is a derivative of the Library (because it

contains portions of the Library), rather than a "work that uses the

library". The executable is therefore covered by this License.

Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file

that is part of the Library, the object code for the work may be a

derivative work of the Library even though the source code is not.

Whether this is true is especially significant if the work can be

linked without the Library, or if the work is itself a library. The

threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data

structure layouts and accessors, and small macros and small inline

functions (ten lines or less in length), then the use of the object

file is unrestricted, regardless of whether it is legally a derivative

work. (Executables containing this object code plus portions of the

Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may

distribute the object code for the work under the terms of Section 6.

Any executables containing that work also fall under Section 6,

whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or

link a "work that uses the Library" with the Library to produce a

work containing portions of the Library, and distribute that work

under terms of your choice, provided that the terms permit

modification of the work for the customer’s own use and reverse

engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the

Library is used in it and that the Library and its use are covered by

this License. You must supply a copy of this License. If the work

during execution displays copyright notices, you must include the

copyright notice for the Library among them, as well as a reference

directing the user to the copy of this License. Also, you must do one

of these things:

a) Accompany the work with the complete corresponding

machine-readable source code for the Library including whatever

changes were used in the work (which must be distributed under

Sections 1 and 2 above); and, if the work is an executable linked

with the Library, with the complete machine-readable "work that

uses the Library", as object code and/or source code, so that the

user can modify the Library and then relink to produce a modified

executable containing the modified Library. (It is understood

that the user who changes the contents of definitions files in the

Library will not necessarily be able to recompile the application

to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the

51

Appendix A. qpOASES Software Licence

Library. A suitable mechanism is one that (1) uses at run time a

copy of the library already present on the user’s computer system,

rather than copying library functions into the executable, and (2)

will operate properly with a modified version of the library, if

the user installs one, as long as the modified version is

interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at

least three years, to give the same user the materials

specified in Subsection 6a, above, for a charge no more

than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy

from a designated place, offer equivalent access to copy the above

specified materials from the same place.

e) Verify that the user has already received a copy of these

materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the

Library" must include any data and utility programs needed for

reproducing the executable from it. However, as a special exception,

the materials to be distributed need not include anything that is

normally distributed (in either source or binary form) with the major

components (compiler, kernel, and so on) of the operating system on

which the executable runs, unless that component itself accompanies

the executable.

It may happen that this requirement contradicts the license

restrictions of other proprietary libraries that do not normally

accompany the operating system. Such a contradiction means you cannot

use both them and the Library together in an executable that you

distribute.

7. You may place library facilities that are a work based on the

Library side-by-side in a single library together with other library

facilities not covered by this License, and distribute such a combined

library, provided that the separate distribution of the work based on

the Library and of the other library facilities is otherwise

permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work

based on the Library, uncombined with any other library

facilities. This must be distributed under the terms of the

Sections above.

b) Give prominent notice with the combined library of the fact

that part of it is a work based on the Library, and explaining

where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute

the Library except as expressly provided under this License. Any

attempt otherwise to copy, modify, sublicense, link with, or

distribute the Library is void, and will automatically terminate your

rights under this License. However, parties who have received copies,

or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Library or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Library (or any work based on the

Library), you indicate your acceptance of this License to do so, and

52

all its terms and conditions for copying, distributing or modifying

the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the

Library), the recipient automatically receives a license from the

original licensor to copy, distribute, link with or modify the Library

subject to these terms and conditions. You may not impose any further

restrictions on the recipients’ exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties with

this License.

11. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

may not distribute the Library at all. For example, if a patent

license would not permit royalty-free redistribution of the Library by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any

particular circumstance, the balance of the section is intended to apply,

and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Library under this License may add

an explicit geographical distribution limitation excluding those countries,

so that distribution is permitted only in or among countries not thus

excluded. In such case, this License incorporates the limitation as if

written in the body of this License.

13. The Free Software Foundation may publish revised and/or new

versions of the Lesser General Public License from time to time.

Such new versions will be similar in spirit to the present version,

but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library

specifies a version number of this License which applies to it and

"any later version", you have the option of following the terms and

conditions either of that version or of any later version published by

the Free Software Foundation. If the Library does not specify a

license version number, you may choose any version ever published by

the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free

53

Appendix A. qpOASES Software Licence

programs whose distribution conditions are incompatible with these,

write to the author to ask for permission. For software which is

copyrighted by the Free Software Foundation, write to the Free

Software Foundation; we sometimes make exceptions for this. Our

decision will be guided by the two goals of preserving the free status

of all derivatives of our free software and of promoting the sharing

and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR

OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE

LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME

THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY

AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU

FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A

FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF

SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest

possible use to the public, we recommend making it free software that

everyone can redistribute and change. You can do so by permitting

redistribution under these terms (or, alternatively, under the terms of the

ordinary General Public License).

To apply these terms, attach the following notices to the library. It is

safest to attach them to the start of each source file to most effectively

convey the exclusion of warranty; and each file should have at least the

"copyright" line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either

version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

54

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a "copyright disclaimer" for the library, if

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the

library ‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

55

	Front page
	Introduction
	Installation
	Getting Started
	Outline
	Main Steps
	A Tutorial Example
	Setting Up Your Own Example

	Different Solution Variants for Special QP Types
	Solving QPs in Standard Form
	Solving QPs with Varying Matrices
	Solving Simply Bounded QPs
	Solving QPs with Positive Semi-Definite Hessian Matrix
	Solving QPs with Trivial Hessian Matrix

	Advanced Functionality
	Obtaining Status Information
	Initialised Homotopy
	Specifying a CPU Time Limit for QP Solution
	Speeding-Up Solution for QPs Comprising Many Constraints
	Further Useful Functionality
	Add-Ons for qpOASES
	Solution Analysis
	Solving Test Problems from the Online QP Benchmark Collection

	Interfaces for Third-Party Software
	Interface for Matlab
	Interface for Simulink
	Interface for scilab
	Running qpOASES on dSPACE
	Using qpOASES within the ACADO Toolkit
	Using qpOASES within MUSCOD-II

	Developer Information and Compiling Options
	Class Hierarchy
	Global Constants
	Compiler Flags

	Bibliography
	qpOASES Software Licence

